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Abstract

The World Wide Web is an evolving network, comprising of webpages and intercon-

nections between the webpages. This huge linked structure of webpages along with

its connections, are better known as webgraphs. Webgraphs are known to break down

into several components namely the Giant Strongly Connected Component, IN, OUT,

TENDRILS and TUBES and the DISCONNECTED COMPONENTS. The whole we-

bgraph as well as the components exhibit interesting properties of which the scale free

and self similar properties were studied within the scope of this project.

The link structure of a collection of websites obtained from a crawl of .GOV

sites done by University of Glasgow was studied both at the macroscopic level and

the microscopic level. The webgraph contained a total of 1,247,753 documents and

roughly over 11 million links. Some of the salient features of the webgraph, namely the

power law distribution for in degrees, out degrees, and the distribution of the size of

the strongly connected components were examined. Studies of the inner structure of

the components of the webgraph revealed a rather fragmented and loosely connected

structure unlike the whole webgraph which contained a giant core. However, the

scale free characteristics were confirmed at the component level by the the degree

distributions.
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Chapter 1

Introduction

The World Wide Web was initially invented in 1989 solely for the purpose of sharing

scientific documents using a common platform. It now consists of several billions of

documents that are linked to one another across the universe and allow users to share

information. These documents are known as web pages and the pages are connected

to each other using hyperlinks. The web is dynamic in nature and the hyperlinked

structure of the web keeps on changing constantly with the addition of new pages

and deletion of old and expired pages. The content of the web pages also keeps on

changing. At present, the number of pages has been estimated somewhere between

15 billion and 30 billion with millions of new pages being added everyday. The new

pages are linked to old pages in a particular way depending on several factors that we

will look at later. This linkbase creates an intricate graph structure that has been of

particular interest in the recent times. A directed graph comprising of web pages that

are connected to each other by hyperlinks is also known as a webgraph. Interestingly,

despite the apparent haphazard nature in which the connections are being created,

the webgraph exhibits some really interesting characteristics.

The study of webgraphs has been of particular interest to scientists because of

several reasons. Developments of efficient search engines and web algorithms for

searching has been benefited by a proper understanding of the structure of the web

graph. Scientists have tried to find out why web authors tend to favor certain web-

pages over others. Certain pages are being linked to more than that of the rest. The

number of documents created by scientists are constantly rising and the scientists are

no longer limited to a small network. Their ideas are shared across the web to a much

bigger community. The web is also playing a huge role to the business community

and helping small businesses collaborate with larger business groups. With the rise

of E-commerce, businessmen are turning to the web for a greater reach and the busi-

nesses are most likely to flourish with a better understanding of the structure of the

1
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web. The presence of various community structures in the webgraph has also been

of tremendous interest. However, it is very difficult to study a huge and complex

network that is constantly changing. Thus there arises the need for efficient crawling

strategies for bigger chunks of the web. Better crawling strategies can be developed

and browsing of this huge repository of information can also be improved greatly by

understanding the finer details of the structures. Compression algorithms have been

used to study the web graph more efficiently. The study of webgraphs has revealed

several interesting macroscopic and microscopic structures and properties that will

be looked at in detail within the scope of this project.

The size of the whole world wide web was predicted to be somewhere between

15 and 30 billions and with millions of pages being added every month its size is

increasing exponentially. Most crawlers cannot reach the whole web and it is difficult

to study the linked structure of such a complex network. Therefore they have been

studied at a smaller scale by allowing the crawler to crawl upto a certain number of

pages. Smaller webgraphs tends to exhibit similar properties to larger ones and are

easier to study than the larger ones. Besides, the web has been known to exhibit

self similar properties. We have studied the link structure of a collection of websites

obtained from a crawl of University of Glasgow done in 2002. The web graph studied,

contained a total of eleven million (11,067,049) links and (1,213,307) pages. It was

studied both at the microscopic and macroscopic level. We have identified some of

the components and studied them in detail with respect to their link structure and

other inherent properties. Power law distribution for in-degrees and out-degrees of

vertices and the distribution of the size of the strongly connected components were

examined both for the total web graph as well as its components. The finer structure

of the components were studied and we have also examined if bow ties characteristic

of a webgraphs actually exist within the components IN and OUT of the webgraph

collection. The results are reported in later sections.

The next sections will throw further light on the various structural and topological

properties of the webgraph as well as our findings on the webcrawl. In section 2 the

various graph theoretic definitions, data structures and algorithms used in the project

are described. Section 3 describes the various structural and topological properties

of the webgraph. Section 4 gives a brief overview of different models of the webgraph
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available while the results of the experiments on the webcrawl are described in Section

5.



Chapter 2

Graph Theoretic Definitions, Data Structures and

Algorithms

2.1 Definitions

A graph G = (V, E) is a collection of vertices V together with a set E which consists

of either ordered or unordered pairs of edges of vertices V . An edge (u, v) denotes

a connection from node u to node v. The total number of vertices in the graph is

usually denoted N = |V | while M = |E| represents the total number of edges in the

graph.

The degree k of a vertex u in a directed graph is the number of edges incident

with it. The in-degree of any vertex v in a digraph is the number of edges, (u, v)

present in the digraph. The out-degree of a vertex v is the number of edges (v, u)

present. The degree of the vertex 2 in Figure 2.1 is 6 with in-degree 2 and out-degree

4 as shown in Figure 2.1.

A walk : A walk can be defined as an alternating sequence of vertices and edges

starting and ending with vertices, such that each edge is directed from the vertex

preceding it to the one following it. The length of a walk is its number of edges. Thus

{8, 81, 1, 12, 2, 23, 3, 36, 6} is a walk from vertex 8 to vertex 6 with a length of 4 in

Figure 2.1. We often omit the edges in listing a walk.

A u-v path of length k from node u to v can be defined as the set k of edges

{uv1, v1v2, v2v3, v3v4, . . . vkv} that form a walk from u to v such that no vertex is

repeated more than once. In the directed case, a path from u to v does not guarantee

a path from v to u. For example in Figure 2.1, {81, 13, 36, 65} would form a path

from 8 to 5 and it can be seen in this case that there exists no directed path from 5

to 8 . The shortest path from a vertex u to v is a set of edges that form a path

between u and v of shortest length.

A cycle can be defined as a closed walk where no vertex is repeated more than

4
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Figure 2.1: A Directed Graph with eight vertices

once Thus in Figure 2.1, {0, 1, 2, 3, 0}, {2, 4, 2} and {1, 3, 1} are cycles while {5, 5}, a

self loop on the vertex 5 represents the smallest cycle in the directed graph.

The diameter of a graph G can be defined as the maximum of the shortest u−v

path lengths over all ordered pairs (u, v) in the digraph.

A subgraph , S = (T, U) is a digraph that consists of a set of vertices T and edges

U such that T is a subset of V and U a subset of E.

A bipartite subgraph B = (H, A) is a digraph that consists of two sets of vertices

U and U ′ such that the edges run from the vertices in set U to that of the vertices in

set U ′.

A tree T is an acyclic graph G = (V, E) where all the vertices in the graph

are connected. A tree is characterized by a root vertex and each of the vertices is

connected to their ancestors or descendants through a single edge. If there is a path

from a vertex v to another vertex u where v and u are vertices in the tree T then v

is the ancestor of u while u is the descendant of v. A root node in a tree cannot

have any ancestors. If a vertex v is connected to another vertex w by a forward edge

then w is a proper descendant of v and w is a proper ancestor of v.

A strongly connected component (scc) is a maximal subgraph X of graph G

such that every pair of vertices u and v in X are equivalent. There is a path from u to

v and vice versa. The graph G = (V, E) can be partitioned into its strongly connected

components C1, C2, C3 and so on, with Ci on vertexset. The digraph in Figure 2.1

can be decomposed into strongly connected components, V1 = {0, 1, 2, 3, 4}, V2 = {5},
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Figure 2.2: A Bipartite Clique

V3 = {6} , V4 = {7} and V5 = {8}.

A weakly connected component is a strongly connected component of the

digraph formed by adding in arc (x, y) whenever (x, y) /∈ E and (y, x) ∈ E. Equiva-

lently, the weakly connected component is a connected component in the underlying

undirected graph G′ of G formed by replacing each edge (x, y) by {x, y}. Thus the

direction of the arcs is not taken into account.

In an undirected graph G = (V, E) a clique can be defined as a subgraph

G′ = (V′,E′) such that for each pair of vertices in the subgraph there is an edge

connecting them that is, it a complete subgraph of G. The size of the clique is the

number of vertices in the subgraph.

A bipartite clique is a subgraph Ki,j = (V ′, E ′) where V comprises of two sets

of vertices V1 containing i vertices and V2 containing j vertices and E represents the

set of all possible edges from V1 to V2. Each of the vertices in the set V1 is connected

to all the vertices in V2. Figure 2.2 is an example of a bipartite clique K3,4 where the

set V = {a, b, c} connects to each of the vertices in V2 = {w, x, y, z}. The first set V1

is called the authorities while V2 represents the hubs. Please refer to [15] for further
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Figure 2.3: A sample webgraph

details on the graph theoretic terms.

The webgraph W = (P, H) is a digraph where P is the set of web pages and H

the set of hyperlinks that connect the webpages in P . W , like every digraph, is known

to break into four disjoint pieces of which the GSCC = (PGSCC, HGSCC) forms the

core of W flanked by two subgraphs IN = (PIN , HIN) and OUT = (POUT , HOUT ), the

subgraphs of vertices that can reach the GSCC and can be reached from the GSCC

respectively, and the subset TENDRILS containing pages that can neither reach nor

be reached by GSCC. The digraph B = (PB, HB), comprising of IN, GSCC and OUT

where PB = PIN

⋃

PGSCC

⋃

POUT and HB the set of hyperlinks that provide the links

within the individual components as well as the hyperlinks from IN to GSCC and

that from GSCC to OUT is referred to as the bow tie B. In the sample webgraph is

given in Figure 2.3, IN and OUT are marked by two blue ellipsoid regions and PIN

and POUT each have 3 pages in them them. The GSCC is shown in the square region

and the collection of pages in IN, OUT and GSCC taken together would represent

PB. A detailed description of the components of the webgraph and its structure at
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both the microscopic and the macroscopic level is given in Section 3.3.

2.2 Data Structures for Graphs

There are two main data structures that are usually used to represent graphs, adja-

cency lists and adjacency matrices. It is important to know which of these representa-

tions would be better suited for a graph of particular size and density. The description

of adjacency lists and adjacency matrices follows. Adjacency Lists : An adjacency

list is an array of linked lists that represents the link structure present in a graph. In

order to represent a graph G with V vertices and E edges, an array A[ ] of size |V | is

created and each element of the array A[u] is a linked list that contains pointers to all

vertices v ∈ V , for which there is an edge from vertex u to v. For undirected graphs

an edge between vertices v and u occurs in both the linked lists of u and v. An edge

v → u in a directed graph is represented by a pointer in A[v] to vertex u. Figure 2.4

shows the adjacency list of the directed graph shown in Figure 2.1. An edge from

vertex 2 to 1 is represented by a pointer in the A[2] to vertex 1. If a vertex has no

outgoing links to any other node the linked list for the corresponding array remains

empty (NULL). In order to represent multiple edges from vertex v to u, pointers are

created to the vertex u more than once. This is seen in A[2] where there are two

references to the node 4, representing two edges 2 → 4. If a new edge needs to be

created from 2 → 0 in Figure 2.1, the linked list has to be traversed until the end

of the list for vertex 2 before a pointer to 0 can be added to the tail of the linked

list. Self loops from vertex v can be represented by a pointer to itself in A[v]. This is

illustrated in Figure 2.4 where a self loop on vertex 5 is represented by a pointer to

5.

Linked lists save a lot of memory and are usually ideal for sparse graphs. The

amount of memory required for a linked list is of the order of O(M + N) since the

edges are represented by the linked lists and the sum of all the lengths of the linked

list is equal to |E| for a digraph and |2E| for an undirected graph. This makes linked

lists much more suitable if a traversal of the whole graph is required. Insertions or

deletions of nodes in adjacency lists require traversal of the corresponding linked list.

Visiting all the nodes in a linked list by starting at the root node and following the

pointers from one node to the next until the end is reached constitutes a traversal.
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Figure 2.4: An adjacency list representation of the directed graph in Figure 2.1

The traversal of the linked list takes roughly O(d) time where d is the outdegree of the

vertex. Computing the degree of a vertex in a linked list requires the same amount of

time. The main drawback of the adjacency list lies in its complicated structure and

representation. Simplicity has to be sacrificed in order to achieve faster traversals

and more efficient space usage for the whole graph. Edge connection lookups are

not as simple as in adjacency matrices. A traversal of the corresponding linked list

is required before the presence of a link can be ascertained or if a link needs to be

deleted.

Adjacency Matrices : An adjacency matrix is a N × N matrix, A[ ][ ], used to

represent the link structure in a graph. An edge between a vertex i and j is represented

by a 1 in A[i][j] while a 0 signifies the absence of any edges. For undirected graphs the

adjacency matrix is symmetric with both A[i][j] and A[j][i] storing the same values.

In the directed case an entry of 1 in A[i][j] corresponds to a connection from i → j

and in A[j][i] represents the arc j → i. The diagonal of the matrix is usually 0 for

loopless graphs. An adjacency matrix representation of the graph in Figure 2.1 is

given below. In the adjacency matrix shown, the entry A[2][4] = 2 represent two

edges from vertex 2→ 4. The self loop on vertex 5 is shown by a 1 in A[5][5].
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Adjacency matrix representation of the graph in Figure 2.1

Adjacency matrices are ideal for dense graphs. The representation of graphs by

a matrix makes it easier to look up edges. Creating an edge or deleting an edge is

as easy as assigning the corresponding entry in the matrix to 1 or 0. In order to

ascertain the degree of a vertex it requires O(N) amount of time since all the entries

of a row corresponding to the vertex in question have to be checked. However, the

space required for a graph is of the order of O(N2) which takes up quite a lot of

memory when the number of vertices is large. Traversals of the whole graph may

require O(N2) time. Thus by comparison linked lists are much more efficient for

most cases.

2.3 Some Graph Algorithms

Depth First Search

The Depth First Search (DFS) Algorithm ( see for example [15] ) proceeds by

selecting a root vertex and then traverses the graph along the child nodes of the search

tree until it reaches a node that has no descendants. At this point, it backtracks to

the most recent node and operates in a similar manner, until all its adjacent nodes

have been explored. For undirected graphs that are connected, the output of the

algorithm is a depth first search tree. However, running the algorithm on a directed

graph results in a depth first search rooted directed forest, comprising of depth first

search rooted directed trees. The output of a depth first search algorithm varies
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Figure 2.5: A sample graph to illustrate the various graph algorithms

depending on the root node chosen. Depth First algorithms are widely used to check

reachability. Other uses of DFS are finding the components of a graph, finding cycles

in graphs and so on.

In the DFS algorithm each of the vertices can have three states: undiscovered,

discovered or explored. As the name suggests, undiscovered vertices are those that the

algorithm has not encountered in its traversal yet. A vertex that has been traversed

at least once but its child nodes have not been examined yet is in a discovered state.

The final state of every vertex in the graph is explored where all the child nodes of

the vertex have been explored. The Depth First Search algorithm has as its input a

graph G whose nodes are marked as undiscovered. Initially a root node is selected and

marked as discovered. On discovery of each vertex in the graph it is assigned a depth

first number. The algorithm then traverses along the child node of the root which

in turn explores its descendant. This process continues until a leaf (a vertex with

degree 1) is found. If the algorithm finds a vertex that has already been discovered

the edge is ignored since it has already been discovered and therefore included in the

search tree. At each step, a descendant is found it is marked discovered and added

to the predecessor subgraph. All the child nodes are recursively examined until a

leaf node is found. The leaf node is marked as explored and since there are no other

nodes adjacent to it the leaf is assigned a finish time. The algorithm then backtracks
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to the recently visited node which is expanded before the control is returned to its

predecessor. The pseudocode for the algorithm is given below and the algorithm is

explained with an illustration of the depth first tree obtained after running DFS on

the directed graph in Figure 2.5.

DFS(Graph G)

∀v ∈ V (G)

Mark v as undiscovered;

time← 0

T [v] = NULL;

∀v ∈ V (G)

Traverse(v);

end.

Traverse(vertex v)

∀u ∈ adj(v)

If u is not discovered

Mark u as discovered;

time← time + 1

depth[u]← time

T [v]← u;

Traverse(u);

end if.

Mark u as explored;

time← time + 1

f [u]← time

end .

Suppose that DFS is run on the directed graph given in Figure 2.5 with the

root vertex chosen to be i. First of all, the vertices in the graph are all marked as

undiscovered and the time set to 1. Then since the starting vertex is i, it is marked

discovered and given a depth first number of 1. Now, the vertices adjacent to i are d

and j and neither of the vertices have been discovered as yet. Let us suppose that d
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is chosen and id is added to the depth first tree. d is assigned a depth first number

of 2 and i is set as the predecessor of d. Vertices adjacent to d are then traversed.

Incidentally, d has only one adjacent vertex b and since it is still in an undiscovered

state it is chosen and the edge db added to the depth first tree. Next, c is chosen and

bc added to the tree. When the algorithm reaches the vertex c, it finds that c has

only one adjacent vertex d but d has already been discovered. The edge connecting

a vertex that has been discovered later in the depth first traversal to one that comes

earlier in the depth first tree of a graph is also known as a back edge. Thus cd is a

back edge as shown by a thin arc in figure 2.6 (a).

Since all the vertices adjacent to c has been discovered, c is marked explored and a

finishing time of 5 assigned to it. At this point the control goes back to its immediate

predecessor b and the unexplored edge ba is chosen. Vertex a is added to the depth

first tree and its adjacent vertices traversed. At a, the algorithm finds two back edges

ad and ab. Thus, e is traversed and since it has no adjacent vertices that are not

discovered as yet, it is marked discovered. ae is identified as a back edge. The control

goes back to a when it is marked discovered, assigned a finishing time and in turn the

control goes to its predecessor, b. At b, the only adjacent vertex that has not been

discovered yet is f . Thus, bf is added o the depth first tree and the adjacent vertices

of f are explored. Let’s suppose that g is chosen as the next vertex to be explored.

fg is added to the depth first tree. The only directed arc from vertex g is to that of

h which is then traversed. At h, there is an arc to f but it is a back edge and it is

therefore marked as discovered and the control returned to its predecessor g which is

then marked discovered as well.

Next, the algorithm keeps on returning the control to its immediate predecessors

from f to b, then onto d and from d to i. The vertices g, f , b and d are all marked

discovered and the control finally goes to i where it finds an unexplored vertex in

j. j is then explored and marked discovered and finally the algorithm terminates in

i. The flow of the algorithm is obvious from the depth first numbers assigned after

each vertex and the finishing times signify the order in which each of the vertices are

explored. In case of a graph where all the vertices are not connected, the algorithm

begins exploring the vertices in a different subgraph after the vertices in the connected

subgraph are explored.
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The algorithm examines all the vertices in the graph. The vertices are assigned

an initial state, undiscovered and each of the vertices are then traversed. The time

required for the initial assignment is O(N). Each of the edges incident upon a vertex

are examined. Thus if we take the sum of the all the edges incident upon a vertex,for

all vertices in the graph we have the set E. Therefore the time required for traversing

all the edges is O(M). The time complexity of the algorithm can be summed is

therefore O(N + M).

Breadth First Search

The Breadth First Search (bfs) Algorithm ( see for example, [9] ) is another search

algorithm that uses local information of the nodes to traverse the whole graph. It is

used as a basis for many important graph algorithms. BFS takes a graph G comprising

of a set vertices V and set of edges E as an input. A root node s is selected as the

starting point of the traversal and the bfs algorithm proceeds to create a bfs search

tree that contains all the vertices reachable from the root node s. Unlike the Depth

First Search algorithm, BFS discovers all the adjacent nodes of a vertex before moving

on to the rest of the graph. It operates on a layer by layer basis, each layer being

characterized by the distance to the source node. The nodes in layer k + 1 are those

that are reachable from the nodes in layer k and have not been discovered yet. Thus

any node that is at distance k from the source is discovered before the nodes at

distance k + 1. The output of the algorithm is a breadth first search tree containing

nodes that are at a particular distance from the source. The index k of the layer that

a node belongs to, represents the distance from the source node.

Like the DFS algorithm, each node can have three states - undiscovered, discovered

and explored as described above. In addition to the state each node has two other

attributes associate with it - the distance from the source and the parent of the node.

The Breadth First Search Algorithm uses a queue as a data structure to store all the

nodes that have been explored. A brief description of the algorithm is given below.

BFS starts with the source node s which is then marked as explored and inserted into

a queue. The adjacency list of the source node s is examined and all the neighboring

nodes are inserted into the queue. A bfs tree is created with s as the root node and

distance from the source to itself is set to 0. The parent of each of the neighboring

nodes of s is set to s. The distance associated with these nodes is set to one more
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than that of the source node. The source node is then set to the explored state and

removed from the queue. These nodes make up the next layer of the bfs tree. The

algorithm then runs by examining each of the new nodes in the layer to find the nodes

that are reachable from them. The distance of the new nodes are set and the nodes

are marked discovered. This process of exploration and discovery continues until the

algorithm reaches the end of the graph. The running time of the algorithm is again

O(N + M).

Breadth First Search is widely used to find the shortest path between the nodes

in a graph, to find the connected components in a graph, to check reachability from

a particular vertex, to test bipartiteness of a graph and for many more purposes.

For my project I did not need to use Breadth First Search. However, it could have

been used in place of DFS to check the reachability of vertices and thus identify

them as belonging to a particular strongly connected component of the graph. BFS

frequently finds its use in computing the shortest path length in a graph. It can be

used to compute the diameter of the whole graph, the components of the webgraph

and also to measure the depth of the components. Since BFS proceeds on a layer by

layer basis we can find the number of vertices on each layer. Thus by running BFS

from the core, we can study the distribution of the vertices relative to the core.

Strongly Connected Component Algorithm

The strongly connected component algorithm is applied on a directed graph in

order to find all the subgraphs such that each subgraph is maximal with respect to

being strongly connected. The SCC algorithm partitions the directed graph into its

strongly connected components. Depth First Search algorithm can be used to find a

rooted directed forest of the digraph. DFS is then run on the transpose of the graph

formed by reversing the arcs but considering the vertices in order of their decreasing

finish times as computed by the first DFS. This outputs a depth first forest, each

subtree constituting a strongly connected component. The time complexity of the

algorithm described above is O(N + M). A pseudocode of the algorithm is given

below.

SCC(Graph G)

Run DFS(G) to find the finishing times f [v] of all the vertices;
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Find(GT );

Run DFS (GT ) starting with the vertices in the descending order

of their finishing times f [v];

The resulting depth first trees are each output as a

strongly connected component ;

The forefather Φ(a) of a vertex x is the vertex y that can be reached by x and

the finishing time in the depth first tree is always the highest. A vertex will have

a forefather if and only if there is a cycle in the graph or the subgraph concerned.

Thus d, i and f qualify as the forefathers of any of the vertices in the respective

subgraphs in Figure 2.5 as illustrated by the depth first tree in Figure 2.6 (a). f

has a finishing time higher than the rest of vertices in the subgraph S = {f, g, h} and

can be reached by the other vertices namely g and h. The main idea of the algorithm

is to find the forefathers in the graph. By definition, forefathers are vertices with the

highest finishing times and all the other vertices in the subgraph can usually reach

them. The first step in finding the components of the graph is to run DFS on the

directed graph to find the finishing times of the vertices. Now, the presence of a

strongly connected component implies that there must be a path from a vertex to

every other vertex within the component. The next step in the algorithm is to find

the vertices that can reach the forefather. This is done by reversing the direction

of the links in the graph and running DFS on the graph starting with the finishing

times(forefathers have the highest finishing times). All the vertices that can reach the

forefather have a lower finishing time and make up a strongly connected component.

Thus once a component is found the Depth First Search Algorithm automatically

chooses the forefather of the next component. Figure 2.6 is an illustration of how

the strongly connected components of the directed graph in Figure 2.5 are found. i,

d and f are the forefathers and running DFS on the directed graph with their links

reversed results in the three components illustrated by the depth first trees in Figure

2.6 (b).

Tarjan’s algorithm ( see [9]) uses a similar idea to that of finding the subtrees using

depth first searches. However it uses a stack and recursively examines all its adjacent

nodes. The nodes are placed in the stack in the order in which they are visited and
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when the subtree is found the stack is emptied thus finding a strongly connected

component of the graph. In a similar manner all the subtrees are found along with

the root, thus partitioning the graph into its strongly connected components. The

complexity of Tarjan’s strongly connected component algorithm is also of the order

of O(N + M).

The Strongly Connected Component Algorithm is usually used to find all the

connected components in a graph. It decomposes a digraph into its several subgraphs

that are both disjoint and maximal. If we treat each of these connected components

as a single node we obtain a directed acyclic graph. The resulting directed acyclic

graph is called the component graph or the condensation graph. A component

graph such as that of the directed graph in Figure 2.3 as shown by Figure 2.7 helps

us understand how each of the strongly connected components interact with each

other in the directed acyclic graph. The figure shows the interaction between the

nine strongly connected components in the digraph. The seven components C1 . . . C7

are connected to each other while C8 and C9 are totally isolated from the rest of the

components in the digraph.

For my project, I used the Tarjan’s Strongly Connected Component Algorithm

in order to find all the strongly connected components of the whole Webgraph. The

largest strongly connected component forms the core or the GSCC (Giant Strongly

Connected Component) of the webgraph. The Strongly Connected Component Al-

gorithm was also used on the individual components IN and OUT in order to find

out the distribution of the strongly connected components with respect to their size.

By treating each of the strongly connected components as a single node a condensa-

tion graph was obtained. Various features, including the indegree distribution, the

outdegree distribution of the condensation graph were analyzed.
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Figure 2.6: Illustration of Depth First Search and Strongly Connected Component
Algorithm on the directed graph in Figure 2.5
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Chapter 3

Structure and Topological Properties of the Webgraph

The relation between size and the occurrence of any event to its rank is referred to

as Zipf’s law [7]. A text or a piece of writing can be viewed as a network of words

connected to each other. Zipf was a linguistic professor who wanted to find the relation

between the frequency of a word used in texts to its rank(referring to its usage). He

observed that in English the most common words like “I” and “the” happen to cover

most of the text as compared to words of lower rank such as “blasphemy”. This

observation was summed up mathematically.

f ∝ r−a

where f is the frequency of occurrence of an event, r its rank and a > 1 a fixed

constant.

A 19th century economist, Vilfred Pareto [34] studied the distribution of wealth

in a population. He observed that it was only a few people who contributed to a

significant proportion of the income while the population was made up of a large

number of people who made a very small contribution. Interestingly, Pareto was

interested in the number of people that had income greater than a certain value. It

was later observed that 20% of the population contributed to 80% of the income.

This became known as the 80 20 rule that is so prevalent in many complex networks.

P [X > x] ∝ x−k, k > 1

where x is the income and X the number of people

3.1 Power Law in Web Graphs

For a long time it was assumed that the distribution of links in a complex network

follows a Poisson distribution. This was mainly because of the insights of Erdös and

Rényi who had explored random placement of links between the nodes in the network.

Thus, it was assumed that the degree distribution of the links were random and

uniform with most nodes having values on either side of the mean degree distribution.

20
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Figure 3.1: Curve showing a power law distribution

However, if we take a closer look at some of these networks in practice we would

observe that they contained a high number of nodes with very few links while the

main character of the network was provided by a few number of nodes with a lot of

connections. A plot of the number of nodes against the number of links in a typical

webgraph is given in the figure above. The distribution was a decaying function known

as a power law distribution showing that the number of nodes decreased exponentially

with the degree. A noticeable feature of this distribution is a long tail or a high number

of nodes with a very few links. A double logarithmic plot for such networks revealed

a straight line with a negative slope. Networks that contain nodes with a power law

degree distribution are called scale free networks.

Barabasi et al. [11] pointed out that the ER(Erdös-Rényi) model failed to take

into account the dynamic nature of complex networks and the linking pattern evident

in such large networks. The World Wide Web, which is the main concern of this

project, is a large complex network that evolves with time. Unlike the static random

graph model induced by Erdös and Rényi, the number of pages in the world wide

web increases and the web authors of newly created pages tend to link to pages

that are already popular. This method of linking to vertices with a large number

of connections within the network is called preferential attachment. Thus the

World Wide Web self organizes itself into a scale-free state that can be explained by

the preferential attachment mechanism described by Barabasi et al [12]. It will be

discussed in subsequent sections but for the time being let’s take a look at the various

instances of power laws in the World Wide Web.
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3.1.1 Indegree Distribution

Power Law for indegree distributions in a web graph: The probability that a page w

has i > 1 connections from other pages in the webgraph is inversely proportional to

i−x for some constant x > 1 (x is the slope of the double logarithmic plot for number

of pages against the indegree i of the page.

P[w = i] ∝ i−x, x > 1, i > 1

It was first suggested by Barabasi et al [11] that the indegree distribution of a

webgraph follows a power law distribution. They studied the webgraph of 325K pages

from the nd.edu domain and the indegree distribution confirmed their assumption.

Kumar et al [27] carried out experiments on a 1997 crawl from the WebBase Project at

Stanford. Their crawl containing 40 million pages was a much bigger crawl than that

of the NotreDame domain and represented a better portion of the web. Surprisingly,

the exponent value for the indegree distribution for both the experiments were found

to be 2.1. Later experiments by [14] on a much bigger Altavista Crawl of 200 million

pages obtained at two different times, May and October of 1999, confirmed the same

value as shown in Figure 3.2. The double logarithmic plot of the indegree distribution

shows a heavy-tailed distribution that points to the presence of a significant number

of pages with a high indegree. The sudden surge shown by the collection of red dots

in the graph is due to spammers creating an excessive number of connections to a

certain web page. The indegree distribution for webgraphs was also studied at various

scales. Ricardo Baeza Yates and Carlos Castillo [10] studied the samples of the web

by confining them to national web domains. They studied the web graph of pages

that are within the country domains of Brazil, Chile, Greece, Italy, Korea, Spain and

the UK and power laws were evident for all the country domains mentioned although

the exponent value in such cases were observed to be 1.9 ± 0.1. The size of these

crawls varied between 3.3 million to 41.3 million pages, the .it (Italy) domain being

the largest and the Chile domain being the smallest. It is worth noting here that

another study of the crawl on the .SK (Slovakia domain) [13] produced a power law

distribution with an exponent of 1.86 which is consistent with the results obtained

in [10]. A study of the webgraph at a finer level was that of the academic web

space carried out by Mike Thelwall and David Wilkinson [33] from the university of

Wolverhampton. They took crawls on the Australia, New Zealand and the UK web
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Figure 3.2: In-degree distribution of the Alta Vista crawl done by Border et al [14]

domain and filtered out sites that were related to only academics. The link structure

of the academic web spaces thus obtained also showed power laws for the indegree

distribution.

3.1.2 Outdegree Distribution

Power Law for outdegree distributions in a web graph: The probability that a page

w has o connections to other pages in the webgraph is inversely proportional to o−x

such that x > 1, o > 1.

P[w = o] ∝ o−x, x > 1, o > 1

The outdegree distribution was also found to follow the power law by both Barabasi

et al [11] and Kumar et al [27]. However, pages with a low outdegree did not seem to

fit that well into the powerlaw distribution. Thus the outdegree distribution wasn’t a

perfect power law. Experiments on an Altavista crawl of 200 million pages by Broder

et al [14] showed that the exponent value for both the May 99 and Oct 99 crawls

were found to be 2.72, as shown in Figure 3.3. It can be noted here that the slope of

the distribution has been calculated by leaving out pages with a very low outdegree.

The value below which pages with out degree distribution deviates from the power

law distribution is called the cut off point.

Ricardo Baeza Yates and Carlos Castillo [10] have noted the exponent value of the
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Figure 3.3: Out-degree distribution of the Alta Vista crawl done by Border et al [14]

outdegree distribution of national web domains for both pages with small outdegree

and large outdegrees. The exponent for large out degrees which is our main concern

has been found to be 2.8±0.8 while that for small out degrees were 0.6±0.2. Another

study of the crawl on the national web domain of Slovakia (.sk domain) [13] produced

a power law distribution with an exponent of 3.66 for the outdegree distribution.

3.1.3 Distribution of the size of connected components in a web graph

The distribution of various sizes of the connected components of a webgraph was also

examined by Broder et al [14]. The sizes of the strongly connected components of

the webgraph they studied followed a power law distribution with an exponent of

2.54. By treating the links as having connections in both directions they verified

that the weakly connected components also followed a power law distribution with

the same exponent. Debora Donato et al. [18] carried out experiments to examine if

power laws could be applied to the individual components of the web graph. Their

experiments confirmed the presence of power laws for all the components with respect

to their indegree distribution, outdegree distribution and the distribution of the size

of the strongly connected components. Thus the number of the strongly connected

components decays exponentially with the size of the component as can be seen by a

log-log plot in Figure 3.4.
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Figure 3.4: SCC distribution of the components of the web graph [18]

The total number of pages in a site is also known to follow a power law. Studies

by Adamic and Huberman [23] from an Alexa and Infoseek crawl of sizes over 259K

and 525K sites showed log normal distribution for the number of pages in a site.

Thus it can be observed that power laws are really quite widespread when it comes

to webgraphs either with respect to the macroscopic structure of the webgraph or the

structure of its components.

3.2 Community Structures in the Webgraph

Another common feature observed in webgraphs is the presence of community

structures. A web community is characterized by very strong linkage pattern be-

tween the websites in the community. For example, the presence of a bipartite clique

reflects a very strong community structure. The bipartite clique essentially comprises

of two sets, the set of Fan pages F and a set of Center Pages C. The set of F pages

comprise of pages that have links to another set of pages. The set of C pages are

pages that are referred to by the F pages. The two sets form the bipartite core. New

websites are being created everyday and it is up to the creator of the web site to link

to already existing websites. Web authors usually link to websites that are popular

and relevant to their topic. Thus websites that contain important information on a

particular theme or topic and are regarded to be of some importance are referenced
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Figure 3.5: An example to illustrate clustering of webpages [4]

often by new websites with a similar theme. These popular pages on a particular

theme are known as authoritative pages. The subset of pages that reference them

constitutes the hub pages. The collection of hub pages that reference the authorita-

tive pages form a bipartite core comprising of a dense linkage between the hub pages

and the authoritative pages.

A good hub refers to several good authoritative pages while a good authority

is usually referenced by several good hubs. These hubs are responsible for holding

the whole webgraph together. They connect to a lot of pages who have very few

connections (one or two incoming links) and allow them to remain connected to other

pages in the webgraph through the hubs.

In fact it has been observed that although webgraphs are resistant to random

removal of nodes the webgraph would totally fall apart if most of these hubs are

systematically removed. Hubs have outgoing links to many pages. They are also
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the only link for many pages and are responsible for providing connections between

different sets of pages. If the hub pages are removed major connections between pages

in the graph will be lost. Pages whose only connection was a hub page will become

totally isolated. Thus the graph will begin to break down into smaller subgraphs if

the hubs are removed. This is why virus attacks targeted at hubs can cause the whole

webgraph to disintegrate quickly.

Websites based on a common theme or common area of interest tend to group to-

gether and form clusters or groups. Study of such linkage pattern of websites clustered

by a particular theme allows us to extract the web communities. Kumar [27] first

studied algorithms to identify the several thousand communities within webgraphs

while Kleinberg [25] has also studied how to extract information from the world wide

web to identify the communiites and their authoritative pages. An example of pages

grouped by themes is given in the Figure 3.5. The groups in blue fall under the

category of travel while those in red are mainly related to newspapers or news media

in Bangladesh. The Green Cluster tends to organize into a separate group although

they fall into the category of News Media. The pages in this group consist mainly of

newspapers in Pakistan and are linked to the red cluster through a page that covers

Foreign News.

3.3 The Structure of the Web

The web is an evolving complex system with the number of web pages and the hy-

perlinks constantly changing. In a recent survey, Gulli and Signorini [22] have found

that there are over 11.5 billion pages (indexable) and several billion links while the

size of the web was found to be around 200 million pages by an Altavista crawl done

by Bharat and Broder in 1997. New web pages are being added all over the world,

while some of them are being taken down. New hyperlinks might be added to an

existing page or even changed to point to a different page (rewiring) and so forth.

In spite of the random way in which the WWW appears to be changing, a study of

the web graph at both the macroscopic level and the microscopic level has revealed a

specific structure. Even the manner in which the WWW is growing follows a certain

pattern. Recently the researchers have taken a great deal of interest in the web graph

because an understanding of the web graph will allow us to design efficient algorithms
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Figure 3.6: The Bow Tie Structure of the Webgraph (adapted from Broder et al [14])

for the search engines. The link structure of the web can be exploited to evaluate

the importance of a web page. PageRank is one such algorithm that uses the link

structure of the web and the kind of sites that link to a page to rank it. This section

describes the structure on the web as a random graph but before proceeding further

a few terms that will be used through out the section need to be defined.

The web graph has a “bow-tie structure”, as was first depicted by Broder. [14]

The webgraph can be broken down into four basic components. It has a giant strongly

connected central core called the GSCC(also referred to as SCC in some literature).

The nodes of IN are those that can reach the GSCC but cannot be reached from the

GSCC. As for the nodes in OUT they can be reached from the GSCC but cannot

reach the GSCC. Although GSCC separates IN and OUT there may be paths from IN

to OUT that do not intersect the GSCC. These form the TUBES. TENDRILS consist

of those nodes that can either reach nodes in IN or be reached by nodes in OUT but

are not in ( GSCC
⋃

IN
⋃

OUT). The rest of the nodes are classified as disconnected

components since they are totally isolated. The nodes in the disconnected components

cannot reach any of the three main components ( GSCC
⋃

IN
⋃

OUT) and cannot be

reached by them. A brief description of the components is given after the following

proposition that shows that the whole webgraph breaks up into disjoint components
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Figure 3.7: Illustration of the interaction between the various components of the
digraph

that are linked to each other through various links.

Proposition 1 A digraph D decomposes into

D′
⋃

IN
⋃

OUT
⋃

R

where

• V (D) = V (D′)
⋃

V (IN)
⋃

V (OUT )
⋃

V (R),

• D′ is a strongly connected component of D,

• IN = {v ∈ V (D)− V (D′) : ∃ a directed path from v to a vertex of D′},

• OUT = {v ∈ V (D)− V (D′) : ∃ a directed path from a vertex of D′ to v}, and

• R is the subgraph induced by V (D)− {V (D′)
⋃

V (IN)
⋃

V (OUT )}.

Note that if v ∈ IN , then v /∈ D′ and v /∈ OUT and v /∈ R. Now if v ∈ OUT ,

then v /∈ D′, v /∈ IN and v /∈ R. Also, v ∈ D′ → v /∈ IN , v /∈ OUT and v /∈ R.

Finally if v ∈ R then v /∈ IN, v /∈ OUT and v /∈ D′ Therefore we can conclude that

V (D′), V (IN), V (OUT ) and V (R) are disjoint sets and partition V (D).

Every pair of vertices in a strongly connected component is equivalent, that is,

there is a path from v to u and u to v for very pair of vertex, be it direct or through
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intermediate vertices. Now if we claim that a vertex v belongs to both IN and

OUT then a vertex u in IN and w in OUT would be equivalent to v. Thus by

the transitive property, u and w would be equivalent making it a single strongly

connected component. This is clearly not the case and therefore we show that all

digraphs decompose into disjoint subsets. In fact, all random digraphs would break

up into these four components [15]. At this point it would be interesting to ask if

there is anything that actually affects the size of these components. For our research

the size of the bow tie of the webgraph is quite important. In fact, Dorgovtev et al

[20] showed that the size of the four main components of a directed graph depends

on various properties of the directed graph. From the point of view of our research

we would like to look at the various sizes of the bow tie seen in webgraphs later. A

brief description of the components of the webgraphs is given below.

GSCC (Giant Strongly Connected Component): The central core or the

strongly connected component of most webgraphs comprises of about a quarter of

the whole graph. In an experiment on 200 million pages from a web crawl by Alexa,

56 million were found to be in the core of the webgraph. Every page in GSCC can be

reached by any other page within the core. The GSCC acts as the bridge between the

other components and the pages in the GSCC have a very good connectivity them-

selves. Pages within the core tend to have a very high connectivity and are referred

to as hubs. Popular websites like Yahoo or Google that provide the connectivity to

many websites by listing them on their page would fall in this category. The concept

of pages acting as hubs will be discussed in more detail in a later section.

IN : This portion of the web graph consists of pages that can communicate with

those of the core but not in the reverse direction. In other words, there is a path

from each vertex of IN to GSCC but there is no path from the pages in the GSCC to

IN. Therefore, BFS in the forward direction will explode from a starting point within

the IN. Nodes within this component are mainly new pages that have not yet been

discovered by the outer world. Broder [14] found these pages to comprise of roughly

a quarter of the whole web graph. Ideally, this subset includes the newly created

pages that aren’t quite known to the outside world and haven’t therefore been linked

to. These pages do however tend to link to popular websites or sites that we refer to

hubs and are known to have a high degree of connectivity.
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OUT : Pages that can be reached from those within the core but not in the Reverse

direction make up this component of the webgraph. OUT also often makes up about

a quarter of the whole web graph and the pages within this component are typically

the corporate websites. Company sites like those of the Starbucks or Air Canada have

incoming links from hubs like Google or Yahoo. A Breadth first search, run from a

starting page within this component will explode along the reverse links. However, a

web surfer browsing through a page in OUT, or a crawler starting in a page in OUT

is most likely to get stuck since there are no links that go back to the core.

TENDRILS and TUBES : Tendrils consist of pages (notin(GSCC
⋃

IN
⋃

OUT ))

that are either reachable from IN or reach to pages in the OUT. They do not have

any incoming links to or from any of the pages within the giant core. As a result they

tend to be isolated. The pages that link to pages in OUT but cannot be reached by

those in OUT or pages from any other component make up the OUT TENDRILS.

IN TENDRILS on the other hand are those pages that can be reached by some vertices

within IN but cannot reach any vertex in IN. Thus we notice that the direction in

which the two different TENDRILS link are exactly opposite to each other. TUBES,

on the other hand comprise of vertices that form a pathway between IN and OUT.

Therefore the pages within the TUBES can be reached from some vertices within IN

and they in turn can reach some vertices within OUT.

DISCONNECTED Components(R) : Disconnected Components is a collection

of vertices of the webgraph that can neither be reached by any vertex in any of the

other components (GSCC, IN, OUT) of the webgraph, nor do they link to any vertex

present in the other components of the webgraph. This subset of vertices are the

ones that do not belong to the giant weakly connected component of the webgraph.

DISCONNECTED Components might consist of pages within a site. Although the

pages within the site do not have any incoming links or outgoing links from and to the

rest of the webgraph, they can actually have interconnections between themselves.

Isolated groups would usually fall in this category. In fact a study of the Chilean

webgraph revealed that 50% of the pages within the .cl domain fall into this subset.

Some examples of disconnected components have been given in [17]. They used a

spectral method to separate disconnected and nearly disconnected components of the

webgraph.
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Proposition 2 Let p ∈ (0, 1) be fixed and n ≥ d. Let Dn,p be the probability space of

all simple digraphs on {1....n}. Then limn→∞ Prob(D ∈ Dn,p is strongly connected) =

1.

Proof : Let Dn,p be the probability space of all simple digraphs on 1 . . . n and let u

and v be distinct vertices of D. Let Eu,v be the event that there is no vertex z such

that (u, z) and (z, v) are arcs. Since the probability of both the arcs being present is

p2, the probability of the event Eu,v occurring is given by

Prob(Eu,v) = (1− p2)n−2.

Now if D is not strongly connected then there are distinct vertices u and v such

that u and v are not joined by a path of length 2.

Prob(D is not strongly connected) ≤ Prob(
⋃

u,v

Eu,v)

≤
∑

u,v

Prob(Eu,v)

=
∑

u,v

(1− p2)n−2

= n(n− 1)(1− p2)n−2

≤ n2(1− p2)n−2.

Now, if we take the natural logarithm of the last expression above we have

ln (n2(1− p2)n−2) = 2 ln (n) + (n− 2) ln (1− p2).

The second term in the expression grows is negative and grows faster than ln(n) as

n→∞, so we see that

Prob(D is not strongly connected)→ 0 as n→∞.

Therefore Prob(D is strongly connected)→ 1 as n→∞.

Thus a directed graph is almost always strongly connected, so the bow tie structure

of a random digraph is almost always just the GSCC.

We have already showed that a webgraph can be decomposed into its disjoint

components of which we have the bowtie comprising of the three most important
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sets IN, OUT and SCC and the rest of the components, namely Tendrils, Tubes

and the disconnected components. Dorgovtev et al [20] showed that the size of the

components of a directed random graph depends on various properties of the directed

graph that would determine their size distribution. It would be interesting to take a

look at the various distribution of the size of components in a webgraph. In Table

3.1 we will take a look at the various sizes of the bowties and its components with

respect to the whole webgraph The crawls examined vary with respect to the size

and scope of the webgraph, the crawl methods and the time the experiments were

undertaken. It can be noticed that irrespective of the size of the crawl, the bowtie

comprises of a major portion of the total webgraph as can be expected. For all

crawls that are confined to specific country domains like Italy, Slovakia, UK or the

IndoChina, the bowtie comprises of over 98% of the total graphs while that for the

Altavista crawl on 200M vertices studied by Broder et al [14] stands at the smallest

at 70% in comparison to the rest. Although experiments on the Altavista crawl had

revealed that the bowtie decomposed into its constituents of roughly the same size, it

was seen to vary in a great deal in other crawls. The core or the GSCC component of

the webgraph has been consistently observed to comprise of the larger portion of the

web with an exception in the WebBase crawl where the OUT component dominates

the webgraph slightly over the core. However, it is worth noting here that the IN

component has been found to be the smaller of the components of the bowtie in size

with the smallest as low as a mere 0.01% of the webgraph in the Slovakia webcrawl

to the largest as high as 21% in the Altavista crawl. The OUT components seem to

comprise of a fair share of the webgraph and is in fact is found to be even bigger than

the core in the WebBase crawl. Thus we can observe bowties of all shapes and sizes

although most of them are characterized by a large core.

Although Broder et al. [14] looked at the macroscopic structure of the web graph

and presented the bow tie structure comprising of four main components, the inner

structure of the components were not considered. They left it as an open question for

future research and it was eventually taken up by Donato et al [18]. They studied

the inner structure of the components IN, OUT and the GSCC. Since it is very dif-

ficult to retain web graphs in memory that are of the order of gigabytes in size it is

essential to use external memory algorithms. They implemented a number of external
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and semi-external memory algorithms to carry out experiments on four crawls from

different domains. They showed that power laws were prevalent in both IN and OUT

for the indegree and the outdegree distribution. However the components themselves

did not break up into the usual bow tie structure. The size of the bowtie varied from

crawl to crawl (please refer to Table 3.1) and moreover, there was no significant giant

component present in any of its components. On the contrary, these components

turned out to be quite shallow and fragmented. A brief description of their exper-

iments and findings will be described next. The core was condensed to a node and

breadth first search was run from the core both along the forward links and the back-

ward links. The total number of layers obtained by running BFS until all the nodes

in the component have been reached is the depth of the component. Experiments

along the forward links revealed that most of the nodes of OUT were actually con-

centrated closer to the giant component. About 90% of the nodes of the components

could be found in the first 5 layers and although the depth of the subset OUT for the

WebBase webgraph was found to be 580, due to a single chain of vertices. Similar

results were obtained for IN, thus confirming that both the components were shallow.

Furthermore there was no sizable strongly connected component present in either of

the components that could make up the core of a bowtie. A daisy chain structure

of the web was suggested by Debora et al [19] to describe the finer structure of the

components of the web graph. The core was studied in relation to its connectivity to

IN and OUT. A large proportion (about 80% for the WebBase Graph) of the nodes

was found to be connected to the components IN and OUT. The core was also found

to be resilient to targeted attacks. Removal of many nodes of very low indegree was

required to be removed before they were reduced to a very small size thus confirming

it to be well interconnected.

3.4 Diameter of the Web Graph, Small World Phenomenon and Growth

Dynamics

The Small World Phenomenon [24] states that the diameter of the graph is small and

any pair of nodes in a graph is connected by a short path. It is observed in various

different systems like the biological systems, social networks, and various technological

networks (citation networks, collaboration graphs, the Internet and the World Wide
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Web). It first came up in the context of social networks. Stanley Milgram [30] chose

two random individuals A and B, in Nebraska and Massachusetts respectively. A was

asked to send out letters to all his contacts who in turn would send out letters to

their acquaintances. The results were surprising and it was noticed that A and B

were separated by at most six other people and thus it came to known as the Six

Degrees of Separation. Watts and Strogatz put forward their own model which

started with a lattice containing vertices in a ringlike structure. The vertices are then

rewired to 2m neighbors where m is the average degree of the vertices. It showed

a small world phenomenon whose clustering coefficient was larger than that of the

random graph.

In this section, we are interested in the small world phenomenon produced by

the web graph. The topology of the web graph is such that not only is any pair of

page a few clicks of each other but it also exhibits a high clustering coefficient. The

growth of the web is unabated and the web graphs keep on growing at an alarming

rate. Thousands of pages are added everyday but the web self organizes itself. Had

it not been for the small world property, it would have been difficult for any user

to navigate from an arbitrary page to reach any other page within the web. The

size of the web was estimated to be 8 billion pages by Kleinberg et al, [25] at the

time of their experiments. They used a robot to extract information about the local

connectivity of the pages. The next layer’s connectivity information was retrieved

recursively and added to a database. In this way, information about all the indexable

websites(that is sites that can be reached by the crawlers) was recorded.

The average distance between any pair of pages in the graph, average d was found

to be 18.59 (19 clicks). From the data obtained they plotted values for average d and

established a relationship between the average distance for any pair of pages and the

size N of the graph.

average d = 0.35 + 2.06 ∗ log N

Due to the logarithmic dependence of d on the size of the web graph, the increase

in the average distance between the pages is hardly noticeable. Broder et al [14]

carried out experiments on an Altavista crawl in 1999. The other key feature of web

graphs is a high clustering coefficient. Adamic [8] studied web graphs at the site level.

He used data from an Alexa crawl on 259, 794 sites for which average d was found
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Altavista WB WB Italy Indo UK SK TREC
1999 2001 2003 China

200M 135.7M 49.3M 41.3M 7.4M 18.5M 50.6M 1.22M
V ertices

1.5G 1.18G 1.19G 1.15G 194.1M 298.1M 1.9G 11.16M
Links

GSCC 28% 32.9% 85.87% 72.3% 51.4% 65.3% 70.8% 74.4%

IN 21% 10.6% 2.28% 0.03% 0.66% 1.7% 0.01% 1.79%

OUT 21% 39.3% 11.26% 27.6% 45.9% 31.8% 29% 12.37%

BOW 70% 82.8% 99.41% 99.93% 97.93% 98.8% 99.81% 98.56%

Table 3.1: A study on various bowties with respect to the size of its components.
Data has been obtained from webcrawls varying in sizes and the year the crawl was
done [18] [31] [32] [13]

to be only 3.1 and the clustering coefficient c = 0.1078 as compared to 2.3× 10−4 for

random graphs. The largest SCC exhibited a small world phenomenon. They noted

that the SCC that contained pages from several several sites were more useful than

those belonging to a single site.

Netcraft is a company that carries out research on various aspects of the Internet

Sites. A survey reported on August 2008 found the total number of sites to be

176,748,506. [3]. The number of sites have really increased at a rapid rate over the

years. The total number of sites at the end of 2002 was somewhere around 35 million

which is about one fifth of the total number of sites now. The graph in the figure ??

shows the exponential growth of the number of sites over a span of 5years The number

of sites more than doubled to about 74M sites from 2002 to 2005, a span of three years

but in the next two years the number almost doubled from 74M to 149M. Thus we can
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clearly see the rate of increase in sites is constantly increasing as can be depicted from

the graph in the figure shown. However, it should be noted here that this increase

only represents that at the site level and not the actual increase in the total number

of webpages. A rough estimate of the total number of webpages is given below.

Maurice de Kunder [6] devised a mechanism for estimating the size of the World

Wide Web. He used four search engines, namely Google, Yahoo, Windows Live

Search and Ask to find the number of indexable pages within the web. Since different

search engines use different strategies to index the web, they come up with varying

information on the number of sites that could be reached. Now, first of all, 50 words

were chosen from an offline text collection in DMOZ [2].The words chosen are such

that it covers all the intervals available. The 50 words are then sent to each of

the 4 search engines. The percentage of documents in which a particular word was

found helps us to estimate the size of the total web. The results obtained for each

of the words are then averaged for a particular search engine. In this manner the

estimations are calculated for each of the search engines mentioned. Once the results

for the estimations are computed the overlap of the sites has to be subtracted from

the sum of all the estimations. Since the overlap is overestimated, the estimate for

the total size of the World Wide Web turns out to be an underestimate. There are

several orderings available as the overlap has to be subtracted in sequence. The size

of the indexed web obtained as of November 12, 2007 is 24.45 billion using the order

YGWA for the search engines. The total number of pages indexed by Yahoo, Google,

Windows Live Search and Ask as of 12th November is roughly 23 billion, 8.5 billion,

13.8 billion and 5.9 billion respectively. Thus this result for the total indexable web

size is estimated to fall between 15 billion and 30 billion documents. It was only

in 2005 that Yahoo announced that they were able to index as many as 19.2 billion

documents [29] which was more than twice the size indexed by Google at that time

(8.1 billion documents). However it is not possible for any search engine to index all

the webpages present in the web. Therefore, there are many webpages present in the

world wide web that are not taken into account. In addition, due to the dynamic

nature of the web, pages are continually being added and some are being deleted as

well. It takes a while for search engines like the Google and Yahoo to update their

records and the old information about webpages is usually retrieved from the cache
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which is not up to date.

3.5 Self Similarity in the Web

The Web graph has a fractal structure which is exhibited under different contexts

and at various scales. By breaking down the whole webgraph into smaller fractions

we notice a very similar structure to that of the whole webgraph. The self similar

nature of the web graph was recently studied by Dill et al [16] and they showed that

statistical dependence was evident in subgraphs containing sites that were cohesive.

Such collection of websites contained pages that shared a common context, be it con-

tent or sites they belonged to. They formed meaningful units, called Thematically

Unified Clusters. Experiments on the link structures of the TUCs revealed a bow

tie structure which is just similar to that of the whole web. Moreover, they were

connected by a strong backbone that was robust and highly connected. The web

graphs were grouped under various contexts – content, location and geographical lo-

cation.For each of the contexts the basic characteristics of the web graph, namely the

in-degree/out-degree distribution, strongly connected component /weakly connected

component size/ bow tie and community structure were examined. Results showed

amazing statistical similarities for the units classified by different contexts.

Content : In order to find the collection of websites that shared the same topic, a set

of keywords was used. The sites that contained all the keywords were combined into

one subset. The sub graphs generated had websites of the order of 105. Experiments

on the link structure of the websites in the sub graphs confirmed the basic character-

istics found in a web graph. However, sub graphs formed by using comparatively new

topics lacked a well defined bow tie structure found in popular keyword set graphs.

Location : Large sites, sub domains and intranets happen to have a lot of web pages

that share a common interest and it makes sense to study the link structures of such

intranets. A crawl on such intranets can be studied in order to verify the fractal

nature of the web. Dill et al [16] used the IBM intranet and several sub domains

each containing about 10000 pages. 82% of the nodes in the IBM intranet were inside

the SCC while for the subdomains it was about 40%. Larger sites showed better bow

tie structures than the smaller ones.

Geographical Location: Local information could be very important to businesses.
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Websites with a common geographical location tend to share a common context. The

Sites that have geographical cues like ZIP, Phone numbers and Addresses can be

grouped together to form a TUC by using databases of latitudes and longitudes.Dill

studied the structure of the SCCs that showed that the TUC s were themselves very

well connected to each other through a navigational backbone.Thus the web graph

can be broken down into several TUCs, each of which shows characteristics similar

to that of the web. These TUC are in turn bound by a navigational backbone that

overlap the clusters and provide robustness and high connectivity between the TUCs.
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Webgraph Models

The Web is already a huge repository of information. Several billions of hyperlinked

documents are already on the web and several millions more are being added every

month. It is growing at a phenomenal rate and scientists are finding it extremely

difficult to map the whole web. Though the web began its journey with the objective

of share documents with the scientific community it has found its uses in the com-

mercial arena as well as in that of social interactions. Current technology is finding it

difficult to cope with the rapid rate at which it is expanding. Crawlers are finding it

exceedingly difficult to gather information about the whole world wide web. To date

there aren’t any search engines that can map the whole world. On top of that, the

sheer size of the web is difficult to manage and store. Efficient compression algorithms

need to be developed in order to study the link structure of the web. In order to get

around these problems we need to develop a model that can represent the web as

accurately as possible with respect to its structural and topological properties as well

as the evolving nature of the web. Some of the motivations for building models that

are representative of webgraphs are given below:

• Understand the evolution of the web better.

• Develop efficient search algorithms to retrieve information.

• Discover hidden characteristics and patterns in the webgraph.

• Use the the webgraph models for computationally difficult problems.

• Testing web applications on a smaller scale.

The use of an accurate webgraph model that incorporates the basic structural and

topological properties of a webgraph would help us understand the evoloution of the

web. We would be able to grasp why certain web authors link to particular sites and

why webpages on a particular topic tend to cluster together or why certain pages tend

40



41

to link to many other pages while the majority of the pages in the webgraph have low

connectivity. A good model will help us understand all the intricacies present in the

linkage pattern in a webgraph and its growth dynamics. Models will help design more

efficient search strategies to find sites that are relevant to the topic. In addition, they

will help understand the link structure of the web and thus enable us to list more

websites on a particular topic. Information retrieval would therefore be more efficient

and thus help the scientific community even better.

The web exhibits several interesting topological properties both at the microscopic

and macroscopic level. There might be many such interesting patterns that can

be revealed if a good model for the webgraph can studied in detail. Besides, the

phenomenal size of the webgraph limits us to test many graph theoretic problems

that are difficult to compute for large graphs. Models of webgraphs would be very

helpful in this context. There are also many web applications that can be tested

on a smaller scale using webgraph models. This would allow us to develop efficient

applications and therefore enhance their performance. Now let us look at what would

make a good model for the webgraph.

A webgraph model will be a good representative if it can capture the dynamic

nature of the web. The Web is continuously changing both in size and content. new

links are constantly being added between the vertices already present in the webgraph.

Some web authors might stop linking to a site and link to another site that is already

present. In other words rewiring of links is also a possibility with webgraphs. Web

authors tend to link to pages that are already popular, relevant to their theme and

are rich in information. Thus there is a pattern in which in the links are being created

between new vertices and the existing ones that should be taken into account. The

model should include both growth and deletion of the vertices.

4.1 Random Graph Model

The classic theory of random graphs, studied in detail by Erdös and Rényi [21] in 1959

has served as the foundation for many real world networks in domains ranging from

biological networks to information networks. They proposed a probabilistic model by

which a random graph could be created. G(n, p) and G(n, m) are two different ways

in which a random graph can be created. G(n, p) refers to a graph of size n where
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Figure 4.1: Degree distribution for a random graph model

the probability of having an edge between any of the two vertices is p. G(n, m) on

the other hand is graph with n vertices and m edges are created at random between

the vertices.

In this section we will discuss the more popular G(n, p) model. Now let us suppose

we have a graph of size n. The number of possible edges between the n vertices is
n(n−1)

2
and each exists with a probability p . Now let’s look at the degree distribution

of random graphs. Let us suppose that a vertex is connected to k other vertices. Now

choosing k vertices to connect to from N −1 other vertices we have k connections are

made with probability p while the rest N−1−k remain unconnected with probability

(1−p). Now the number of possible combinations to choose k connections from N−1

vertices is
(

N − 1
k

)

. Therefore the probability distribution obtained can be given by

the following equation.

Prob(vertex v has degree k) =

(

N − 1

k

)

pk(1− p)N−1−k.

The degree distribution for traditional random graphs result in a binomial distri-

bution such that the vertices with degree k are uniformly distributed on either side of

the mean degree. Unfortunately this fails to meet the criterion of power law graphs
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to which webgraphs belong, which are scale free and tend to decay exponentially as

k rises. Besides, note that traditional random graphs are static in nature. In other

words, the number of vertices in the graph is fixed to begin with and therefore do

not account for the evolving nature of the web. Random graphs created from random

pairings are undirected in nature and do not incorporate any of the topologies usually

seen in a webgraph. The small world effect is, however, observed in random graphs.

The vertices in the random graph model are also separated by a very short distance

between them.

4.2 The Preferential Attachment Model

Since the Random Graph Models failed to meet most of the desirable properties of

a complex network like the webgraph, a new model was proposed by Barabasi and

Albert [11] in 1999. With a focus on the dynamic nature of the webgraph, Barabasi

and Albert tried to design a model that took the dynamics of such networks into

account. The Preferential Attachment Model is an evolving network model of

the webgraph that includes both the growth of the webgraph and the mechanism by

which new links are created between existing web pages and new ones. The number

of this vertices of this model grows with time and so does the number of edges. It’s far

more realistic because it takes into account the nature of the WWW and the manner

in which a user links his site to other websites available on the network. It is quite

likely for a new site to be linked to popular sites or corporate sites that are already

well connected, that have high indegree. The probability Π(ki) of a vertex i having

an indegree ki to get a new edge is proportional to the ki of the vertex as shown by

the equation below.

Π(ki) =
ki

∑

j kj

The sum of the indegree of all the vertices in the denominator provide the nor-

malizing factor. Thus higher the indegree ki of the vertex, the higher is the likelihood

of the vertex to acquire a new edge. This bias of connecting to vertices with higher

indegree is sometimes referred to as the preferential attachment or the “the rich gets

richer”. We notice in the equation above that a new node x will link to an existing

node y is directly proportional to the indegree i of the vertex y. Similar examples
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also apply to other complex networks like the internet model, the citation network

where an author is most likely to cite a paper with many references or even the bio-

logical networks. This model meets two main features of the webgraphs - the power

law degree distribution and the properties of small world networks. It can be shown

that the indegree distribution of the vertices for such models follow the power law

thus depicting their scale free nature . The average path length between any pair of

vertices for this model is found to be quite small. Although, this model meets the

power degree distribution and the small world phenomenon, it fails to provide us with

a directed graph that has cycles or cliques present in webgraphs.

4.3 Copying Models

In a quest for a model that incorporates all the properties of webgraph, Kumar et

al. [26] came up with the copy model. Before creating a web page, an author

is quite likely to look for existing pages similar to his theme. Of the existing pages

some websites tend to carry more information and are therefore linked to by many

other webpages with similar topic. These webpages usually have a lot of hyperlinks

to other pages. Many of these hyperlinks to which the popular webpage has linked

are of interest and might be copied by the creator. The author will also include pages

of his own choice as well in addition to the hyperlinks copied from popular pages.

Therefore we see a fraction of the hyperlinks is usually copied from webpages that

bear resemblance in content.

Dynamic in nature, the copying model allows an increase in the number of vertices

and edges over time. Indegree distributions for this model follow the power law,

usually seen in web graphs. Another feature of the web graph which was absent in

earlier models discussed is presence of bipartite cliques. The copying model happens

to generate a large number of cliques. In addition, the small world phenomenon is

also observed in such models. There are two types of copying models – the linear

growth copying model and the exponential growth copying model.

4.3.1 The Linear Growth Copying Model

The linear growth copying model [25] is an evolving model of the web graph in

which one vertex is added at every timestep to the existing graph Vt. An outdegree
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of d is kept constant. It is assumed that each new vertex can link to all the vertices

in the web graph. In other words, a vertex added at time step t + 1 can link to the

vertices available from time step t. A constant out degree of d is maintained and a

copy factor α ∈ (0, 1) is used to choose the proportion of the links that will be copied

from the chosen vertex to the new vertex.

4.3.2 The Exponential Copying Model

The exponential growth copying model was studied by Kumar et al in 2000 [26].

It is also an evolving model but unlike its linear version, the exponential growth

copying model allows self loops and the growth in the number of vertices at each time

step is a proportion of the number of vertices already existing in the webgraph. As

new vertices are added the creation of new edges follows a particular criteria. Since

multiple vertices are being added at every time step, edges can be created between the

new vertices and the existing vertices as well that between the vertices that are being

added. Thus if a particular probability edges are created between the new vertices

and the existing ones chosen at random with probability p then edges are also created

between the new vertices chosen at random with probability 1 − p. In addition, a

proportion of the vertices will also have self loops.

4.4 Multi Layer Model

Traditional random graph models fail to take into account the self similar nature of

the web graphs. All the models discussed so far have represented the web graph in

one layer, allowing each vertex to connect to all the vertices in the graphs. However,

these models cannot explain the presence of dense subgraphs in the web graph. In

a recent paper [16] Dill et al. showed that the Web Graph is a fractal with several

regions or layers that are generated by independent processes. Each of these regions

contain a cohesive collection of web pages that share the same theme. Each collection

of such pages is called Thematically Unified Clusters (TUC). These Thematically

Unified Clusters exhibit characteristics that are similar to the Web which explains

the fractal nature of webgraphs. The clusters are connected to each other through

a navigational backbone. In order to account for the self similar nature of the web

graph Laura et al [28] came up with ”The Multi Layer Model” in 2002. The multi
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layer model is a hybrid of both the evolving network model as well as the copying

model.



Chapter 5

Experiments and Results

The main objective of my experiments was to study the link structure of a collection

of websites obtained from a crawl of .GOV sites done by University of Glasgow. The

webgraph contained a total of 1,247,753 documents. It was studied both at the micro-

scopic and macroscopic level. Some of the salient features of the webgraph, namely

the power law distribution for indegrees, outdegrees, and the distribution of the size

of the strongly connected components was examined. Experiments were performed

to identify each of the main components of the web graph, namely the Giant Strongly

Connected Component, IN, OUT, TENDRILS and TUBES and Disconnected Com-

ponents. The structure of some of the components were studied and their indegree

distribution and out-degree distribution over the vertices showed power laws. In this

section, I will describe the datasets for my experiments, data structures used, algo-

rithms and experiments performed on the graph, the methodology for my experiments

and the results obtained. Datasets, Data Structures and Link Information

For my experiments, I used datasets from a University of Glasgow crawl [1] done

on .gov websites. The crawl was stopped after it reached one million documents

specifically html files and text files. However, the crawl includes documents of other

file types like images, postscript files, pdf files and other application files as well. The

datasets were preprocessed to leave out pages that were duplicates. Duplicate pages

are basically pages with the same content that have been identified by crawlers as

different pages due to differences in their canonical form. For example, the crawler

might identify http://www.abc.gov and www.abc.gov/index.html as different pages

due to the difference in the html tag although they are basically the same page. Such

pages show up as duplicates and need to be removed. These duplicates were removed

and all links to the web page with different canonical forms were incorporated into

one page. Another problem that arises with crawlers when there is a redirection.

Where the crawler encountered a redirection from one webpage to another the final

47
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Id1 Id2 Forward Links Backward links

G05− 27− 2210295 G13− 41− 0507968 2 0
G02− 29− 0959755 G02− 83− 2257767 0 1
G03− 63− 2538302 G22− 94− 1660421 1 0
G02− 78− 2945139 G05− 54− 2938760 1 1
G41− 63− 1569388 G41− 71− 0723473 1 0
G01− 68− 2524035 G15− 35− 2304333 0 1
G09− 26− 2455494 G40− 48− 2352462 1 0
G01− 43− 2031819 G08− 98− 1347644 0 1
G09− 28− 2646499 G41− 16− 1615589 0 1
G00− 15− 3335359 G36− 88− 2456389 0 1

Table 5.1: A section of the Links resolved file with the linkage Information of the
webgraph

destination was considered. In other words, any links that showed up in the dataset

because the user was being redirected to a destination page were processed so as

to incorporate it as a link to the final destination page. Each of the webpages in

the webgraph were given an id to uniquely identify them. The link information of

the web sites was stored in a file. A diagram of a portion of the file, containing

the link information is shown below. The first two columns in the diagram below

represent the vertices that are connected to each other, either in one direction or

both. A forward link can be defined as the link from vertex id1 to vertex id2, while

a backward link connects vertex id2 to id1. The third column represents the number

of forward links,and the last column represents the number of backward links. Thus,

there is a link from G14-15-3079981 to G14-21-2349280 in either direction, as shown

in table 5.1. Multiple links between two vertices in a particular direction were found

as can be observed from in the first row of the dataset sample. The 2 in the 3rd

column represents double links from vertex G05-27-2210295 to G13-41-0507968 while

there are no links connecting G13-41-0507968 to G05-27-2210295.

In order to store the link structure of the web graph, adjacency lists were used

as the data structure. Adjacency lists are arrays of linked lists and the space com-

plexity for this data structure is of the order of O(M + N) compared to O(N2) for

adjacency matrices. The sheer size of webgraphs makes it very difficult to be stored

in main memory specially using adjacency matrices. Besides, it is much easier to find



49

neighbors of a vertex (O(d)) that belong to large graphs. These two properties make

adjacency list an ideal data structure for the web graph.

The file for the link structure was scanned and each time a new vertex is found,

a new node is created. The node information is stored along with its in degree and

out degree values in a data structure that is gradually updated. Let’s call this data

structure the symbol table, for convenience. On every scan of the information on a

link, the vertices are compared with those already present in the symbol table. Two

vertices id1 and id2 are examined for every link and links are created either from id1

to id 2 or from id2 to id1 or both . If the vertex id1 has already been registered,

and a forward link has to be created between id1 and id2, id2 is attached to the

tail of the linked list for id1 and a new list is created for id2. For backward links

between id1 and id2, id1 is attached to the tail of the linked list for id2. The file

contained over 9747K lines or pairs of nodes. Since both the vertices were matched

against those already in the symbol table to check if they were already registered it

was extremely time consuming to check for 9 million pairs of nodes as we will see

later. The number of disk accesses required to read the whole webgraph into memory

was extremely expensive. This is mainly because of the size of the webgraph and a

File I/O is also much more expensive than that of accessing any data in memory.

Once the link information for the web graph has been read from the file, the next

step is to identify the different components of the web graph. The graph contained

11,067,049 links and 1,213,307 pages.

Finding the Components of the Web Graph

Once we have stored the linkage information in the form of adjacency lists the

Strongly Connected Component Algorithm (SCC) is first run on the the web graph.

Tarjan’s algorithm [9] for the Strongly Connected Component algorithm was imple-

mented since it is more efficient than the other known SCC algorithms. The algorithm

finds all the strongly connected components in the web graph in linear time, (O(N)

for time complexity) but it is worth mentioning here that webgraphs of sizes over 11

million links like the one above are extremely difficult to process using conventional

memory algorithms like the one above. The information on all the strongly connected

components is stored. Among these components, one of them is expected to stand

out in size and it forms the core or the GSCC of the web graph. In my experiment,
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the size of the core or the Giant SCC was 898,500 vertices and the total number of

strongly connected components obtained was 299,618 (it includes many components

of size 1). 297,547 of the 299,618 components were found to be singletons which is

roughly over 97% of the total number of components.

Thus, the core of the web graph comprises approximately 74% of the whole web

graph which deviates significantly from results obtained by Kleinberg et al. [25] and

Kumar et al [27]. An index of all the vertices belonging to GSCC are stored in an

array. In the next step, Depth First Search algorithm was run from each of the

vertices belonging to SCC. Running DFS from the vertices of the GSCC provides

with the set of vertices that can be reached from GSCC. The vertices that can be

reached from vertices in the core, but don’t belong to the GSCC, are by definition

vertices in OUT. Let X be the set of vertices such that it contains vertices belonging

to the GSCC and OUT. The other major component IN comprises of vertices that

can reach those in GSCC but cannot be reached by vertices of the core. Now since we

have already identified the core we can easily finding the vertices of IN
⋃

GSCC by

reversing the links and find the set of vertices that are reachable from those in GSCC

along the reverse links. Let Y be the set of vertices such that it comprises of vertices

reachable from GSCC along the reverse links and are found by running Depth First

Search along the reverse links.

X = {v ∈ V (OUT)
⋃

V (GSCC) : ∃ a directed path from any vertex in GSCC to v}

Y = {v ∈ V (IN)
⋃

V (GSCC) : ∃ a directed path from any vertex v to those in GSCC}

At this point, having found a set of vertices X and Y the components IN can found

leaving out GSCC from Y (V(IN) = V(Y)−V(GSCC)) while OUT can be found by

leaving out vertices belonging to GSCC from the set X (V(OUT) = V(X)−V(GSCC)).

Thus we have identified the components IN and OUT and have the full bowtie B at

this point.

The next step is to identify the set of vertices belonging to the Tendrils. Now

Tendrils would consist of IN Tendrils and the OUT Tendrils. IN Tendrils are ver-

tices reachable from IN but not viceversa. DFS, run on the vertices belonging to
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IN along the forward links results in a set of vertices F (F = IN
⋃

IN Tendrils
⋃

GSCC
⋃

OUT
⋃

Tubes that include IN Tendrils, IN, GSCC, OUT and the Tubes.

Let us call this set F. On the other hand, DFS run on the set of vertices in OUT along

the reverse links would actually explode to give us the set of vertices J(J = OUT
⋃

OUT Tendrils
⋃

GSCC
⋃

IN
⋃

Tubes) belonging to OUT Tendrils, Tubes, OUT,

GSCC and IN. Now the Bowtie B comprises of vertices belonging to IN, GSCC, and

OUT we can write F and J in terms of B. The set of vertices F and J both have the

B and Tubes in common. Thus the intersection of sets F and J would give us B and

Tendrils. IF we leave out vertices belonging to the bowtie from the intersection of

the sets F and J we would obtain the set of vertices belonging to Tubes. Now by

excluding vertices that belong to the bowtie B and the Tubes from the set F gives

us IN Tendrils while by excluding vertices belonging to either the bowtie B and

the Tubes from the set J results in OUT Tendrils. Thus we have both portions of

the Tendrils and the union of IN-Tendrils and the OUT Tendrils would give us the

component TENDRILS of the webgraph. Thus we have all the components of the

webgraph, barring the DISCONNECTED Components.

F = B
⋃

Tubes
⋃

IN Tendrils

J = B
⋃

Tubes
⋃

OUT Tendrils

F
⋂

J = Tubes
⋃

B

Tubes = (F
⋂

J)−B

IN Tendrils = F − B − Tubes

OUT Tendrils = J −B − Tubes

While running DFS from the vertices in the component IN the vertices v such

that there is a edge {u, v} where u ∈ IN and v ∈ GSCC are the entrypoints of the

Giant Strongly Connected component. Similarly the exitpoints of the GSCC are

identified by separating the vertices x such that there is an edge {x, y} where x ∈

GSCC and y ∈ OUT. Thus by running DFS along the reverse links from OUT we

identified all the exitpoints of the core, GSCC. Having found the components we will

take a look at the different sizes of the various components, their degree distributions
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Figure 5.1: Indegree Distribution for the webgraph

and other structural properties. Before we go into that we will study the various

degree distributions of the whole webgraph.

Power Laws on Degree Distributions and Size of the Components

The degree distribution of the web graph follows power laws for both the indegree

and the outdegree of the vertices in the web graph. The frequency distribution for the

indegree and the out degree distribution of the graphs were computed. The maximum

indegree of a vertex in the web graph has been found to be 44, 347 and the maximum

outdegree of the vertex in the web graph was 653. The number of nodes having an

indegree x is calculated for the vertices with indegree x and a log-log plot is done. It

clearly shows a heavy-tailed distribution and verifies the power laws for the in-degree

distribution. The slope of the first graph gives the value of the exponent for the

in-degree distribution. The slope is calculated by using a regression model that best

fits the graph. From my data, the exponent for the in-degree was found to be 2.0281.

The exponent of the in-degree distribution however deviated slightly from that of

2.1, found by both Barabasi and Albert et al [12] and Kumar et al [27]. in their

experiments.

Similarly the frequency distribution for the out-degree of all the vertices in the

web-graph is computed and a log- log plot is done for the number of pages with out-

degree x against the out degree of the page. The graph for the out degree distribution

shows a deviation from the power laws for low values of x but as the values of x
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Figure 5.2: Outdegree Distribution of the Webgraph

gradually increases the distribution exhibits power laws. The exponent for the out-

degree distribution is calculated in a similar manner and it is found to be 2.68194. It

is worth mentioning here that the exponent calculated by Albert and Barabasi was

2.71.

The distribution of the strongly connected components was also observed with

respect to their sizes. A double logarithmic plot was done for the scc distribution.

However, is should be mentioned here that the largest component (898500)vertices

and the smallest component (1) were left out in order to fit the distribution into a

power law.The exponent for the scc distribution was found to be 2.145

The component OUT had 155, 103 vertices which is roughly about 12.78% of the

whole webgraph studied. The indegree distributions and the outdegree distributions

of the vertices within OUT were studied to verify their scale free properties within a

component. The indegree distribution as seen in Figure 5.4 clearly exhibit power law

distributions. Although the outdegree distribution of OUT shows power law distribu-

tions for vertices with a higher outdegree, it deviates from the powerlaw distribution

near the tail of the graph. The heavy tailed distribution is missing.

The results were obtained by running the jobs on nodes in the cluster at Math

and Stat. The compute node used for the purpose of the experiments had a dual core

processor with a speed of 3GHZ speed and a memory of 32GB RAM. Please check

[5] for details on the configuration of the compute nodes.
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Figure 5.3: Strongly Connected Component Distribution
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We have looked at a dataset to closely examine and compare it to a webgraph. We

wanted to verify if a smaller dataset obtained from a random crawl would exhibit scale

free characteristics seen in webgraphs. The scale free characteristics namely power

laws with respect to indegree distribution, outdegree distribution and the strongly

connected component distribution with respect to size were consistent with results

showed by larger graphs like the Altavista crawl on 200 million nodes done by Broder

[14]. Close examination of the link structure of the dataset revealed a giant component

that comprised of about 74.21% of the whole graph. Thus, most of the nodes in the

graph were concentrated in the core making the graph highly connected. The IN and

OUT were roughly only 12% each of the whole graph. We wanted to see if there

were bowties inside the components. Our studies revealed that unlike the findings

with the whole webgraph there were hardly any significantly large strongly connected

component inside the components. The largest scc in OUT consisted of only 3

vertices thus revealing a very fragmented and loosely held component. The indegree

distribution, outdegree distribution and the scc distribution were also studied at the

component level and it exhibited power laws.

For future studies, the depth of each of the components can be studied. We would

like to recommend the study of the reliability of the webgraph. It would be very

useful if we can find out how the connectivity of the webgraph would be affected

if nodes were removed at random. It is well known that since webgraphs contain

hubs residing in the core of the webgraph that are responsible for holding the whole

webgraph together, removal of the major hubs would lead to the webgraph breaking

up. This can be examined by removing vertices with the highest outdegree in the

webgraph. It is quite plausible that the same should hold true for the dataset although

it exhibited a higher connectivity due to the densely connected giant core that made

up a significant portion of the webgraph.



Bibliography

[1] The .gov test collection. http://ir.dcs.gla.ac.uk/test_collections/govinfo.

html, November 2002.

[2] Dmoz, open directory project. http://dmoz.org/, March 2008.

[3] Netcraft, November 2008. http://netcraft.com.

[4] Touchgraph, November 2008. http://touchgraph.com.

[5] Mathstat cluster, March 2009. http://www.mathstat.dal.ca/cluster/index.

php/Site/Hardware/.

[6] World wide web size, March 2009. http://www.worldwidewebsize.com/.

[7] Lada A. Adamic. Zipf, power-law, pareto - a ranking tutorial.

[8] Lada A. Adamic. The small world web. pages 443–452. Springer, 1999.

[9] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Anal-
ysis of Computer Algorithms. Addison-Wesley Publishing Company, Reading,
MA, 1974.

[10] Ricardo Baeza-Yates and Carlos Castillo. Link analysis in national Web domains.
In Workshop on Open Source Web Information Retrieval (OSWIR), 2005.

[11] A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
1999.

[12] Albert-Laszlo Barabasi, Reka Albert, and Hawoong Jeong. Scale-free charac-
teristics of random networks: the topology of the world-wide web. Physica A:
Statistical Mechanics and its Applications, 281, 2000.

[13] Luca Becchetti, Carlos Castillo, Debora Donato, and Adriano Fazzone. A com-
parison of sampling techniques for web characterization. In Workshop on Link
Analysis (LinkKDD), 2006.

[14] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer Networks,
2000.

[15] Thomas H. Cormen, Charles E Leiserson, and Ronald. L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, MA, 1990.

57



58

[16] Stephen Dill, S. Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan,
D. Sivakumar, and Andrew Tomkins. Self-similarity in the web. In The VLDB
Journal, pages 69–78, 2001.

[17] Chris H. Q. Ding, Xiaofeng He, and Hongyuan Zha. A spectral method to sepa-
rate disconnected and nearly-disconnected web graph components. In KDD ’01:
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 275–280, New York, NY, USA, 2001. ACM.

[18] D. Donato, L. Laura, S. Leonardi, and S. Millozzi. Large scale properties of the
webgraph. European Physical Journal B, 2004.

[19] Debora Donato, Stefano Leonardi, Stefano Millozzi, and Panayiotis Tsaparas.
Mining the inner structure of the web graph. 41, May 2008.

[20] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Giant strongly con-
nected component of directed networks. Physical Review E, 64:025101, 2001.

[21] P. Erd
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